28 const time::milliseconds InMemoryStorage::ZERO_WINDOW(0);
42 if (m_it != m_cache->get<byFullName>().end()) {
43 m_ptr = &((*m_it)->getData());
75 return m_it == rhs.m_it;
81 return m_it != rhs.m_it;
95 m_scheduler = make_unique<Scheduler>(ioService);
100 InMemoryStorage::init()
103 m_capacity = m_initCapacity;
105 if (m_limit != std::numeric_limits<size_t>::max() && m_capacity > m_limit) {
106 m_capacity = m_limit;
109 for (
size_t i = 0; i < m_capacity; i++) {
110 m_freeEntries.push(
new InMemoryStorageEntry());
118 while (it != m_cache.end()) {
122 BOOST_ASSERT(m_freeEntries.size() == m_capacity);
124 while (!m_freeEntries.empty()) {
125 delete m_freeEntries.top();
131 InMemoryStorage::setCapacity(
size_t capacity)
133 size_t oldCapacity = m_capacity;
134 m_capacity = std::max(capacity, m_initCapacity);
136 if (
size() > m_capacity) {
137 ssize_t nAllowedFailures =
size() - m_capacity;
138 while (
size() > m_capacity) {
139 if (!
evictItem() && --nAllowedFailures < 0) {
140 BOOST_THROW_EXCEPTION(Error());
145 if (m_capacity >= oldCapacity) {
146 for (
size_t i = oldCapacity; i < m_capacity; i++) {
147 m_freeEntries.push(
new InMemoryStorageEntry());
151 for (
size_t i = oldCapacity; i > m_capacity; i--) {
152 delete m_freeEntries.top();
157 BOOST_ASSERT(
size() + m_freeEntries.size() == m_capacity);
165 if (it != m_cache.get<byFullName>().end())
170 if (
isFull() && !doesReachLimit) {
173 setCapacity(newCapacity);
177 if (
isFull() && doesReachLimit) {
182 BOOST_ASSERT(m_freeEntries.size() > 0);
187 entry->setData(data);
188 if (m_scheduler !=
nullptr && mustBeFreshProcessingWindow > ZERO_WINDOW) {
189 entry->scheduleMarkStale(*m_scheduler, mustBeFreshProcessingWindow);
191 m_cache.insert(entry);
197 shared_ptr<const Data>
200 auto it = m_cache.get<byFullName>().lower_bound(
name);
203 if (it == m_cache.get<byFullName>().end()) {
208 if (!
name.isPrefixOf((*it)->getFullName())) {
213 return ((*it)->getData()).shared_from_this();
216 shared_ptr<const Data>
220 auto it = m_cache.get<byFullName>().
find(interest.
getName());
223 if (it != m_cache.get<byFullName>().end()) {
224 return ((*it)->getData()).shared_from_this();
229 it = m_cache.get<byFullName>().lower_bound(interest.
getName());
231 if (it == m_cache.get<byFullName>().end()) {
236 if (it != m_cache.get<byFullName>().begin()) {
241 if (ret ==
nullptr) {
247 return ret->
getData().shared_from_this();
253 for (; it != m_cache.get<byFullName>().
end(); it++) {
254 if ((*it)->isFresh())
265 BOOST_ASSERT(startingPoint != m_cache.get<byFullName>().end());
267 if (startingPoint != m_cache.get<byFullName>().begin()) {
268 BOOST_ASSERT((*startingPoint)->getFullName() < interest.
getName());
272 bool hasRightmostSelector = !hasLeftmostSelector;
279 if (startingPoint == m_cache.get<byFullName>().end()) {
283 if (hasLeftmostSelector) {
284 if (interest.
matchesData((*startingPoint)->getData())) {
285 return *startingPoint;
290 auto rightmost = startingPoint;
291 if (startingPoint != m_cache.get<byFullName>().end()) {
292 auto rightmostCandidate = startingPoint;
293 Name currentChildPrefix(
"");
296 ++rightmostCandidate;
302 bool isInBoundaries = (rightmostCandidate != m_cache.get<byFullName>().
end());
303 bool isInPrefix =
false;
304 if (isInBoundaries) {
305 isInPrefix = interest.
getName().
isPrefixOf((*rightmostCandidate)->getFullName());
309 if (interest.
matchesData((*rightmostCandidate)->getData())) {
310 if (hasLeftmostSelector) {
311 return *rightmostCandidate;
314 if (hasRightmostSelector) {
317 if (currentChildPrefix.
empty() || (childPrefix != currentChildPrefix)) {
318 currentChildPrefix = childPrefix;
319 rightmost = rightmostCandidate;
330 if (rightmost != startingPoint) {
334 if (hasRightmostSelector) {
335 if (interest.
matchesData((*startingPoint)->getData())) {
336 return *startingPoint;
348 m_freeEntries.push(*it);
350 return m_cache.erase(it);
357 auto it = m_cache.get<byFullName>().lower_bound(prefix);
358 while (it != m_cache.get<byFullName>().end() && prefix.
isPrefixOf((*it)->getName())) {
365 auto it = m_cache.get<byFullName>().
find(prefix);
366 if (it == m_cache.get<byFullName>().end())
374 if (m_freeEntries.size() > (2 *
size()))
381 auto it = m_cache.get<byFullName>().
find(
name);
382 if (it == m_cache.get<byFullName>().end())
391 auto it = m_cache.get<byFullName>().
begin();
398 auto it = m_cache.get<byFullName>().
end();
421 for (
const auto& elem : m_cache.get<byFullName>())
422 os << elem->getFullName() << std::endl;
PartialName getPrefix(ssize_t nComponents) const
Extract a prefix of the name.
Copyright (c) 2011-2015 Regents of the University of California.
void erase(const Name &prefix, const bool isPrefix=true)
Deletes in-memory storage entry by prefix by default.
int getChildSelector() const
Cache::index< byFullName >::type::iterator findNextFresh(Cache::index< byFullName >::type::iterator startingPoint) const
Get the next iterator (include startingPoint) that satisfies MustBeFresh requirement.
virtual bool evictItem()=0
Removes one Data packet from in-memory storage based on derived class implemented replacement policy.
void printCache(std::ostream &os) const
Prints contents of the in-memory storage.
bool isPrefixOf(const Name &other) const
Check if this name is a prefix of another name.
const_iterator & operator++()
virtual ~InMemoryStorage()
Represents an Interest packet.
bool operator==(const const_iterator &rhs)
boost::multi_index_container< InMemoryStorageEntry *, boost::multi_index::indexed_by< boost::multi_index::ordered_unique< boost::multi_index::tag< byFullName >, boost::multi_index::const_mem_fun< InMemoryStorageEntry, const Name &, &InMemoryStorageEntry::getFullName >, std::less< Name > > > > Cache
bool operator!=(const const_iterator &rhs)
InMemoryStorage::const_iterator end() const
Returns end iterator of the in-memory storage ordering by name with digest.
Table::const_iterator iterator
virtual void beforeErase(InMemoryStorageEntry *entry)
Update the entry or other data structures before a entry is successfully erased according to derived ...
InMemoryStorage(size_t limit=std::numeric_limits< size_t >::max())
Create a InMemoryStorage with up to limit entries The InMemoryStorage created through this method wil...
shared_ptr< const Data > find(const Interest &interest)
Finds the best match Data for an Interest.
const Data & getData() const
Returns the Data packet stored in the in-memory storage entry.
virtual void afterInsert(InMemoryStorageEntry *entry)
Update the entry or other data structures after a entry is successfully inserted according to derived...
InMemoryStorageEntry * selectChild(const Interest &interest, Cache::index< byFullName >::type::iterator startingPoint) const
Implements child selector (leftmost, rightmost, undeclared).
Represents a self-defined const_iterator for the in-memory storage.
bool matchesData(const Data &data) const
Check if Interest can be satisfied by data.
Represents an absolute name.
Represents an in-memory storage entry.
const Name & getFullName() const
Get full name including implicit digest.
size_t size() const
Get number of components.
const_iterator(const Data *ptr, const Cache *cache, Cache::index< byFullName >::type::iterator it)
bool isFull() const
returns true if the in-memory storage uses up the current capacity, false otherwise
bool empty() const
Check if name is empty.
void insert(const Data &data, const time::milliseconds &mustBeFreshProcessingWindow=INFINITE_WINDOW)
Inserts a Data packet.
bool getMustBeFresh() const
Check whether the MustBeFresh element is present.
InMemoryStorage::const_iterator begin() const
Returns begin iterator of the in-memory storage ordering by name with digest.
Represents a Data packet.
void eraseImpl(const Name &name)
deletes in-memory storage entries by the Name with implicit digest.
static const time::milliseconds INFINITE_WINDOW
size_t getCapacity() const
returns current capacity of in-memory storage (in packets)
const Name & getName() const